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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this ezamination.

1. (a) State what it means for a real sequence to converge.

We say that the sequence (z,) converges to ! (and write lim z, = 1) if, given € > 0
we can find a number N, such that, whenever n > N, we have |z, — | <e.

(or Ve > 0, 3N such that n > N = |z, — | < €.)

(b) Use the definition of convergence (not the combination theorem or any other
theorems) to prove that
- nf+1 1
n00 24 3n2 3

We have
n2+1_1_ 3n2+3 B 3n?+2  3n?4+3-8n?-2 1
3n2+2 3 3(Bn2+2) 3(3n2+2)  3(3n2+2)  3(3n2+2)

To make |z, — 1/3| < €, we need to have

1 1
e — o&3n?+2> —
|3(3n2+2)’<€ ol 3e
1/1 1 2
2 — — — —— — d—
on >3(3£ 2)©n> 5 3
So we take
[T 2
V9 3

provided that the expression under the square root is nonnegative. If it is negative
the inequality n? > 3 (3 — 2) is satisfied for all natural numbers, so we can take
N=1. ‘

(c) State what it means for a real sequence to be a Cauchy sequence.

We say that the sequence (z,) is Cauchy, if, given € > 0 we can find a number N,
such that, whenever n > N, and m > N, we have |z, — | < €.

(or Ve > 0, 3N such that n > N and m > N = |z, — 7,4 < €.)
(d) Use the definition (not a theorem) to show that the sequence (a,) given by

ap = —
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is a Cauchy sequence.

Given € > 0 we must find /N such that
n>N, m>N=>|a, —an| <e
Since a, = 1/n and a,, = 1/m, we investigate

1 1 1
o | B e

1
Ian —aml = =~
n m n m

by the triangle inequality. Sincen > N & 1/n<1/Nand m > N & 1/m < 1/N,
we have

1 1 1 1 2
> N, SN=lgg—tn|f—-F+—< =+—==—.
n m la a|_n+m N+N N

To guarantee |a, — am| < ¢, it suffices to have

2
— <
N =

e N2>

L]

We take, therefore,

N=2Z.
€

(e) Prove that every convergent sequence of reals is a Cauchy sequence.

We are given that the sequence has a limit, say [, i.e. lim z, = [. This means:
n—oo

Given € > 0 we can find N such that

€

n>N=>|:a:ﬂ-—l|<2

We are asked to prove that it is Cauchy, i.e. Ve > 0, 3N such that n > N and
m>N=> |z, —zn| <c

So, given € > 0 we use the same N as in the equation above to deduce that, whenever
n > N and m > N we have at the same time |z, — l| < ¢/2 and |z, — | < €/2.
Then

€
lzn-—a:m|=|a:n—l+l—:rm|§|In—[]+|l—a:m|<§+§=e.

2. (a) State the definition of lim f(z) = L.

r—at
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%
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%
OOO
2%
We say that the limit of f(x) as = tends to a from the right is I, if, given ¢ > 0 we
can find a § > 0, such that: whenever a < z < a + 4§, we have |f(z) — I| < .

(b) Let f: R — R be defined by

_ 2-3, (z< 2)s
flz) = { IG/I, (=2}

Show carefully (using € and ) that

lim f(z) =1, lim f(z)=3.

2= x—2+

(i) For lim f(z) =1 we need to prove

T—2—

Ye3 0 050:2-82ac<2=|flz)~1]<e

We can restrict our attention to z > 0 (and < 2). We have f(z) = z2—3 <4—3 = 1.
Therefore, |f(z) — 1| =1— f(z) =1— (z* — 3) = 4 — z%. This gives

If(z) -1l <ed-2l<exd4—c< 1
If € <4 we get
If(z) -1 <ee Vi—e< |z

Then we get

If(z) -1l <ee Vid—e<u.

We match

2-0=Vd—-e6=2—V4—c¢.

We only need to prove that
0>02-vV4-€e>002>Vi—-c4>4—€c 0> —¢,

which is true. The case € > 4 is even easier: In this case 4 — 12 < ¢ is always true
(z2 > 0) as
44—z’ <4d<e

This means we can take any § > 0 with § < 2 in this case. The condition § < 2
guarantees we are still working with z > 0.
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(ii) We need to show that given ¢ > 0, we can find § > 0 such that
2<z<24+6=|f(z)-3| <e

We have for z > 2

6
__3)
-

6 —3z] 3z-6 3z—6
= = <

If(x)_3| B III . 2

2
<e¢=>3:1:—6<2£<:>.7:<2+§e.

So we can take § = 2¢/3.

(c) Let f be continuous on the compact interval [a,b]. Show that f is bounded on
[a, b].

We will prove that f is bounded above. If it is not, given n, we can find a number
Tn € [a,b] with f(z,) > n. These numbers form a sequence (z,), n = 1,2,....
This sequence is bounded, as all the terms are in [a, b]. By the Bolzano-Weierstrass

theorem, it has a convergent subsequence, call it =, , r = 1,2,.... Call its limit &.
Asa < z, <b, we also have a < { = limz, < b. By the continuity of f(z) we
have

f(§) =1im f(zy,).

On the other hand, f(z,.) > n, > r — oco. But this means that the sequence
f(za,) is unbounded, while it converges, which implies that it is bounded. This is a
contradiction. So f(z) is bounded above. For the bound below, we can use — f(z).
It is continuous on [a, b] so it is bounded above by M, say. Then

—f(z) <M= f(z) > —-M, Vz € [a,b],

i.e. f(z)is bounded below.

(d) Can you apply the theorem in (c) to the function f in (b) on the interval [0, 5]?
Determine (with explanation) whether the function f is bounded on [0, 5] or not.

The function f is not continuous at 2, since the limits from the left and from the right
are different. Consequently, we cannot apply the theorem in (c) to this function.
This does not mean that the function is unbounded on [0,5]. In fact it is. On
[0,2) we have f(z) = z? — 3. Since z? ~ 3 is increasing on this interval, we have
—3 < z? < 1. On the interval [2, 5] we have f (z) = 6/z. Clearly this is a decreasing
function, so that 3 > 6/x > 6/5. So on [0, 5] we have —3 < f(z) < 3.

3. (a) State and prove the sandwich theorem for sequences.

Theorem: Suppose that y, - lasn -3 ooand 2z, = lasn o co. Ify, <z, < 2,

n=12...thenz, -l asn — oco.
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Proof: Let € > 0 be given. Since y, — I, we can find N; such that
n>N = |y, — 1] <e¢,
and the last inequality with absolute values is equivalent to
l—e<y,<l+e
Since z, — I, we can find N, such that
n> Ny = |2, — | <, "
and the last inequality with absolute values is equivalent to
l—e<zp<l+e

Let N = max(N,, N3). Then whenever n > N we have both n > N, and n > N,,
so we can apply the inequalities above to get

l—e<y<l+e, and l—e<z, <l+e

This gives
l—e< S zp Sy <lte=l-ec<z, <l¥ec

So we have found N such that
n>N=|z, -] <e

Hence, z, = l as n — oo.
(b) Show that lim {/3" 4 57 = 5.
n—oo0
(Hint: You may assume that lim {/a =1 for a > 0.)

n—00

We have that 3" + 5" < 5" + 5™ = 2- 5™ for n € N. Obviously 3" + o™ > 5". These
imply

5= V5" < Y35 < V2.5 = ¥/2.5.
Since {/a — 1, for a > 0, we deduce that
lim¥2.5=1-5=5.

Now we use the sandwich theorem, with y, = 5, z, = ¥/3" + 57, 2, = /2. 5, and
Yn < Tn < 2z, and conclude that

lim /3" 4 57 = 5.

(c) Define what it means for the series Z a, to converge.
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We define the partial sums of the series as follows:
S51=a1, $S2=a;+az, Sz3=a+ay+as... sy=a+ay+---+ay.
If the sequence of partial sums (sy) is convergent and

lim sy = s
N->ooo N ;

co
then we say that the series E a, converges and its sum is s.
n=1

(d) Determine with explanations whether the following series converge or diverge.

n=1 n=1

For the first series the easiest test to use is the ratio test. We have a, = n3 (3",

Ay = (R +1)3 (%)nH. These give

13 1\n+1 1 31 1 31 1 1
=an+1:(n+ ) (2") = n+ | 1= _._)(]+O)3—=——<1.
@ ns (3) n ) 2 n) 2 2 3

Qni1

Ay

Since the limit is < 1, the ratio test implies that the series converges.
We proved that lim /3" + 5" = 5 # 0. By the N-th term test for divergence, the
n—o0

(e o}
series E V3™ + 5 does not converge.
n=1

4. (a) (i) State the Cauchy—Schwarz inequality.

Let ay,ay,...,a, and by, by, ..., b, be real numbers. Then
2 2 2y1/2 -2 2 2y1/2
larby + azby + - - - + anby| < (a2 + a3 + - + a2) (b + b3+ ---+b2) ",
or

(@1by + azbe + -~ + anbn)® < (af +a +--- +a2) - (B3 + 02 +--- +b2).
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n
(ii) Let z,z2,...,Z, and wy, ws, ..., w, be positive numbers with Z wf- = ], Usa
j=1
the Cauchy-Schwarz inequality to show that

n 2 T
(Sareut) <St-ud)
j=1

=1

We take :
a; = T;wy, bjz‘lﬂj, j=1,2,...,ﬂ

in the Cauchy-Schwarz inequality. We get
(zywy - wi + Tows - Wo + - -+ + TpWy - wy,)?
mn
< (ziw + zws + -+ shwl) - (Wi w4+ wd) = zlu?,
=1

using the given condition w} + w3 + - - - + w2 = 1. The left-hand side is exactly the
left-hand side of the required inequality:

2

¥ 2
2
E zjw; | = (T1wy - w1 + Towy - wy + -+ + Tpwn - wy)° .
i=1

oo 3
(iii) If the series Z a? converges, show that the series

n=1

converges absolutely.

oo
a ; .
We need to prove that E '"'E%I converges. We consider its partial sums
n
n=1

N
> ==
n3/2

n=1

and prove that they are bounded above. We apply the Cauchy-Schwarz inequality
to get
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> |2

n=1

1/2 i © 1/2

2

s (Tars) <(Se55)
n=1 n=1 n=1

The first infinite series converges by assumption. For the second we notice that it is

¢(3),i.e. s=3> 1. As a result it converges. The right-hand side is a fixed number

(not infinity) and the partial sums are bounded above. They form an increasing

converges.

sequence bounded above, so the series Z | 5 /2|

(b) State and prove the Bolza.no—Welerstrass Theorem. You may assume that every
sequence of reals has a monotone subsequence.

Theorem: (Bolzano-Weierstrass) Every bounded sequence in R has a convergent
subsequence.

Proof: Let (z,) be a bounded sequence. It has a monotone subsequence, say (z,, ).
Since the whole sequence (z,) is bounded, the subsequence (z,, ) is also bounded.
So (z,,) is a monotone and bounded sequence. Such a sequence converges to its
supremum (if it is increasing), or to its infimum (if it is decreasing).

5. (a) State the Intermediate Value Theorem.

Theorem. Let f : [a,b] — R be continuous. If A lies between f(a) and f(b), then
we can find a { between a and b such that A = f(&).

(b) Let f : [0,1] — [0, 1] be continuous on [0, 1].
Prove that for some £ € [0, 1] we have f(£) =

Define
9:[0,1] 2 R, g(z)= f(z)—=z.

Then g is a continuous function on [0, 1]. Moreover,
9(0) = f(0) - 0= f(0) 20, as f(0) >0,

9(1)=f(1)-1=f(1)-1<0, asf(1)<1
If g(0) = 0, then we take £ = 0, as f(0) = 0. If g(1) = 0, then we take £ = 1, as
f(l)=1
If g(0) # 0 and g(1) # 0 we apply the intermediate value theorem to g on the
interval [0, 1] with A = 0, as
9(0) > 0 > g(1).
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The result is that we can find a £ € (0,1) with g(§) = 0, ie. f(€) —€ = 0, i.e.
J(€) =&

(c) Let y be positive. Using the function f(z) = z?, show that y has a square root.

Case I: 0 < y < 1. Let A = y in the Intermediate Value Theorem. Take a = 0,
= 1. Since f(0) = 0 and f(1) = 1, we have f(0) < A < f(1). The intermediate
value theorem provides a { € (0,1) with f(§) =y = & =y, ie £ = /7.

Case 2: y = 1. Obviously v/1 = 1.

Case 3 y > 1. Then y? > y. We apply the Intermediate Value theorem on the
interval [a,b] = [1,y] with A = y. We see that f(1) < A < f(y) = 4. The Theorem
provides a £ € (1,y) with f(§) =y o 2 =y, ie. £ = /7.

(d) Let f : R — R be a continuous function for which
(f(z))*—2*=1, VzeR,
and f(0) = —1. Show that
f(z) =—-V1+22, VzeR.

We solve the equation (f(x))? — z? = 1 easily to get
f(z) = £V1+ 22

We have to show that for all z € R the correct sign to take is —. We first check
that it is correct for £ = 0. We are given f(0) = —1. Since v/1 4+ 02 = 1, the correct
sign is — for z = 0. Assume that for some zy we have

f(zo) = \/1+ 22

Obviously 1+ z3 > 1, so that \/1+22 > 1 and f(zo) > 1. By the intermediate
value theorem applied to the interval between zo and 0, i.e. [z0,0], if zo < 0 and
[0, zo), if o > 0, with A = 0 we can find a £ with

f(€)=0.
This gives f(£)?—&? = 02—£2, while the given equation with z = £ gives f(£)?—£2 =
1. Therefore, —£2 = 1 & £? = —1 < 0, which is a contradiction, as squares are

nonnegative. Therefore there is no zo with f(zo) = /1 + z2.

6. (a) (i) Show that for all positive numbers y we have

In(y) <y-1
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You may assume that e* > z + 1 for all z € R.

We plug £ = In(y) into e* > z + 1 to get

e"¥ >n(y)+1ey>n()+1<y—1>In(y).

(ii) State and prove the Arithmetic Mean — Geometric Mean Inequality for n non-
negative numbers a,, as, ..., a,. You may use (i).

AM-GM:
a1 +agt-+a,

n

GM = {a;-az---a, < = AM.

Naturally the geometric mean can also be written as GM = (a; - a3 - - - a,)'/™.
Proof

Case I: Foralli = 1,2,...,n we have a; = 0. Then AM = 0 = GM so the inequality
is true.

Case 2: At least one of the nonnegative numbers is nonzero. This implies that the
arithmetic mean, which we denote by A, is nonzero. We apply (i) successively to
the numbers a;/A, fori=1,2,...,n. We get

0(Z) < 2o
n(3) < &

(%) < an

We sum up the inequalities above to get

IA

IA

S ey nThn M, g
1=1 i

=
Using the property In(ab) = In(a) + In(b) we get
@ T a
In —1<0=|]—=<1,
({15) <o— 115+
as In is an increasing function and In1 = 0. We deduce

|l

i ¥ 1/n
= [Jlasa = (Ea) < A& GM < AM.

i=1
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(b) (i) For 0 < z < y prove the following inequalities

2
$<l_]'<\/;’l:y<y.
=ty

Remark: The middle inequality says that the harmonic mean of z and y is less than
their geometric mean. Both means are between the two numbers, this is the content
of the other two inequalities. We prove them with strict inequalities for two distinct
numbers z,y, T < y. )
VIy<ye <y’ oz<y

by squaring inequalities with positive terms, and canceling y > 0.

% 4 2 S8 - Sz< 22y z(z+y) <2zy e rty< 2y <
1/z+1/y (y +z)/zy T+y ¥ 4 S ¥

where we have multiplied with the positive number z + y and cancelled the positive
number z.

2 2zy 2zy
L Y IY & —— < Iy > — < T+
1/z+1/y 4 T+y . VZY ’

2/ry<z+ydry < (z+y)l =22+’ +2ry © 0 < 2?2+ 92— 22y = (z — )2
The last inequality is clear, since z # y, so the square of = — y is positive.

(ii) Define the sequence (z,) by

. 2
1 =1/2, =1, Zony1 = \TonT2za_1, Tonp2=—5—7—, n=>1

I2n I2n+1

Use induction and (i) to prove that
ZTan—1 < Tontl < Tonga < Ton, 1 € N.

Deduce that the subsequences given by (z3,) and (z2,_,) converge to the same limit.
What does this imply for the sequence (z,)?

We compute z3 = /T27; = 1/1/2 and
2 2

Tq = — A
YT Yzt 1445
We show
P(n): Zon_i1 < Tons1 < Tonpa < Topn
by induction.
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2

P(l}): m<azs<m<nelf2< \/1/2<1
+

z L

N

We check: ;
2 % 1/2€2>V204>2

which is true.

2 1 2
V1/2 < & V2> +‘/_¢2\/§>1+\/§@\/§>1,
1+ /2 2 !

which is true.
<lel+vV2>26v2>1,

2
142
which is true.
Assume P(n) is true. We need to show that P(n + 1) is true. We have

Pin+1): o < Ton43 < Tontq < Ton42

We use £ = T9,4; and y = o,y in (i) together with Zons1 < Tanyz from P(n) to

get
Tont1 < VT2n+1Z2n+2 = Tongs < Tonq4o.

2
1/Zonyo + 1/$2n+3,

we use (i) with £ = Z3,43 and y = 7,5 and the fact just proved that Tont3 < Tonsa
to deduce: 0

1/x2n+2 + 1/$2n+3
This shows that P(n + 1) is true and completes the induction.

Since

Ton4q =

Tony3 < = T2n44 < Ton42-

The subsequence with odd subscripts is strictly increasing and bounded above by
T3, SO it converges to its least upper bound. The subsequence with even subscripts
is strictly decreasing and bounded below by z;, so it converges to its infimum. Say

limzy, =1, limzg,_; =m.
n n

We need to prove that [ = m. We look at Z3,,9 = /ZonZsno; and take limits of
both sides. Since z2, — [, we also have z3,,5 — [, as a subsequence. We get

l=1limZopys = V0Iimzolimzey 1 =Vim=l=Vim =2 =lm=l=m

by canceling I. This is justified as I > z; = 1/2 > 0. As both subsequences with
even and odd subscripts converge to the same limit, the whole sequence converges
to this limit.
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